Bildungsdatenwissenschaft: ein Paradigmenwechsel für die Methodologie der Erziehungswissenschaft?
Main Article Content
Abstract
Educational Data Science: A Paradigm Shift for the Methodology of Educational Science?
This article analyzes educational research approaches in the context of educational data science. Based on traditional research paradigms, it examines the extent to which educational data science implies a potential paradigm shift in educational science. The increasing digitalization and the resulting availability of large amounts of data open up new possibilities for gaining insights into educational processes. Educational data science is defined as the application of methods from computer science, statistics, and related disciplines to pedagogical phenomena. Central constructs such as big data, machine learning, data mining and data analytics are explained, with their interdisciplinary basis emphasized. The article also highlights the diversification of educational data science into research strands such as educational data mining and learning analytics. Despite the potential offered by the analysis of large data sets in the context of education, an analysis of educational science publications shows a low presence of data science methods. The article therefore argues for a stronger integration of educational data science into educational research by expanding curricula, continuing education programs, and promoting interdisciplinary cooperation in order to enhance the methodological diversity of educational science while addressing methodological and ethical challenges.
Bibliographie: Ifenthaler, Dirk: Bildungsdatenwissenschaft: ein Paradigmenwechsel für die Methodologie der Erziehungswissenschaft?, Erziehungswissenschaft, 70 (1-2025), S. 35-45.
Article Details
Literature
Baker, Ryab/Siemens, George (2015): Educational Data Mining and Learning Analytics. In: Sawyer, R. Keith (Hrsg.): The Cambridge Handbook of the Learning Sciences. Zweite Auflage. Cambridge: University Press, S. 253-272. https://doi.org/10.1017/CBO9781139519526.016.
Bartholomew, David J. (1967): Stochastic Models for Social Processes. London, New York, Sydney: John Wiley & Sons.
Blackmon, Stephanie J./Moore, Robert L. (2020): A Framework to Support Interdisciplinary Engagement with Learning Analytics. In: Ifenthaler, Dirk/Gibson, David (Hrsg.): Adoption of Data Analytics in Higher Education Learning and Teaching. Cham: Springer International Publishing, S. 39-52.
Bond, Melissa/Khosravi, Hassan/De Laat, Maarten/Bergdahl, Nina/Negrea, Violeta/Oxley, Emily/Pham, Phuong/Chong, Sin Wang/Siemens, George (2024): A Meta Systematic Review of Artificial Intelligence in Higher Education: A Call for Increased Ethics, Collaboration, and Rigour. In: International Journal of Educational Technology in Higher Education 21, 4. https://doi.org/10.1186/s41239-023-00436-z.
Breiman, Leo (2001): Random Forests. In: Machine Learning 45, 1, S. 5-32. https://doi.org/10.1023/A:1010933404324.
Buckingham Shum, Simon/Ferguson, Rebecca (2012): Social Learning Analytics. In: Educational Technology & Society 15, 3, S. 3-26.
da Silva, João Lita/Caeiro, Frederico/Natário, Isabel/Braumann, Carlos A./Esquível, Manuel L./Mexia, João Tiago (2013): Advances in Regression, Survival Analysis, Extreme Values, Markov Processes and Other Statistical Applications. Heidelberg: Springer.
Dawson, Shane/Hubball, Harry (2014): Curriculum Analytics: Application of Social Network Analysis for Improving Strategic Curriculum Decision-Making in a Research-Intensive University. In: Teaching & Learning Inquiry 2, 2, S. 59-74. https://doi.org/10.20343/teachlearninqu.2.2.59.
Demirbaga, Ümit/Singh Aujla, Gagangeet/Jindal, Anish/Kalyon, Oğuzhan (2024): Big Data Analytics. Cham: Springer. https://doi.org/10.1007/978-3-031-55639-5.
Drucker, Harris/Burges, Christopher J. C./Kaufman, Linda/Smola, Alex J./Vapnik, Vladimir (1997): Support Vector Regression Machines. In: Mozer, Michael C./Jordan, Michael I./Petsche, Thomas (Hrsg.): Advances in neural information processing systems 9. Camebridge: MIT Press, S. 155-161.
Gibson, David C/Ifenthaler, Dirk (2017): Preparing the Next Generation of Education Researchers for Big Data in Higher Education. In: Daniel, Ben Kei (Hrsg.): Big Data and Learning Analytics in Higher Education. Current Theory and Practice. Cham: Springer, S. 29-42. https://doi.org/10.1007/978-3-319-06520-5_4.
Holzer, Julia/Grützmacher, Luisa/Ludwig, Sina/Bacher, Johann/Dumont, Hanna/Kampa, Nele/Krainer, Konrad/Lüftenegger, Marko/Maaz, Kai/Pant, Hans Anand/Prenzel, Manfred/Spiel, Christiane/Schober, Barbara (2024): Bildung gemeinsam gestalten: Empfehlungen für Projekte in Kooperation zwischen Wissenschaft, Politik und Praxis. In: Zeitschrift für Erziehungswissenschaft. https://doi.org/10.1007/s11618-024-01273-0.
Ifenthaler, Dirk (2015): Learning Analytics. In: Spector, J. Michael (Hrsg.): The SAGE Encyclopedia of Educational Technology. Los Angeles: Sage, S. 448-451. https://doi.org/10.4135/9781483346397.n187.
Ifenthaler, Dirk (2022): Data Mining and Analytics in the Context of Workplace Learning: Benefits and Affordances. In: Goller, Micheal/Kyndt, Eva/Paloniemi, Susanna/Damsa, Crina (Hrsg.): Methods for Researching Professional Learning and Development. Challenges, Applications, and Empirical Illustrations. Cham: Springer, S. 313-327. https://doi.org/10.1007/978-3-031-08518-5_14.
Ifenthaler, Dirk (2023): Ethische Perspektiven auf künstliche Intelligenz im Kontext der Hochschule. In: Schmohl, Tobias/Watanabe, Alice/Schelling, Kathrin (Hrsg.): Künstliche Intelligenz in der Hochschulbildung. Chancen und Grenzen des KI-gestützten Lernens und Lehrens. Bielefeld: transcript, S. 71-86. https://doi.org/10.14361/9783839457696.
Ifenthaler, Dirk/Greiff, Samuel (2022): Learning Analytics: Analyse von Bildungsdaten in der Berufsbildung. In: Berufsbildung in Wissenschaft und Praxis, 51, 2, S. 13-17. https://www.bwp-zeitschrift.de/de/bwp.php/de/bwp/show/17813 [Zugriff: 21. Februar 2025].
Ifenthaler, Dirk/Widanapathirana, Chathuranga (2014): Development and Validation of a Learning Analytics Framework: Two Case Studies Using Support Vector Machines. In: Technology, Knowledge and Learning 19, 1-2, S. 221-240. https://doi.org/10.1007/s10758-014-9226-4.
Köller, Olaf (2014): Entwicklung und Erträge der jüngeren empirischen Bildungsforschung. In: Fatke, Reinhard/Oelkers, Jürgen (Hrsg.): Das Selbstverständnis der Erziehungswissenschaft: Geschichte und Gegenwart (=Zeitschrift für Pädagogik, Beiheft, Band 60). Weinheim: Beltz Juventa, S. 102-122. https://doi.org/10.25656/01:9083.
McFarland, Daniel A./Khanna, Saurabh/Domingue, Benjamin W./Pardos, Zachary A. (2021): Education Data Science: Past, Present, Future. In: AERA Open 7. 1, S. 1-12. https://doi.org/10.1177/23328584211052055.
Oelkers, Jürgen (2014): Praxis und Wissenschaft. Überlegungen zur Forschungsstruktur der Erziehungswissenschaft. In: Fatke, Reinhard/Oelkers, Jürgen (Hrsg.): Das Selbstverständnis der Erziehungswissenschaft: Geschichte und Gegenwart (= Zeitschrift für Pädagogik, Beiheft, Band 60). Weinheim: Beltz Juventa, S. 85-101. https://doi.org/10.25656/01:9088.
Papamitsiou, Zacharoula/Filippakis, Michail E./Poulou, Marilena/Sampson, Demetrios/Ifenthaler, Dirk/Giannakos, Michail (2021): Towards an Educational Data Literacy Framework: Enhancing the Profiles of Instructional Designers and E-tutors of Online and Blended Courses with New Competences. In: Smart Learning Environments 8, 18. https://doi.org/10.1186/s40561-021-00163-w.
Peña-Ayala, Aeljandro (Hrsg.) (2023): Educational Data Science: Essentials, Approaches, and Tendencies. Singapur: Springer. https://doi.org/10.1007/978-981-99-0026-8.
Phung, Dinh/Webb, Geoffrey I./Sammut, Claude (Hrsg.) (2020): Encyclopedia of Machine Learning and Data Science. New York: Springer. https://doi.org/10.1007/978-1-4899-7502-7.
Piatetsky-Shapiro, Gregory (2012): The Journey of Knowledge Discovery. In: Gaber, Mohammed Medhat (Hrsg.): Journeys to Data Mining. Heidelberg: Springer, S. 173-196. https://doi.org/10.1007/978-3-642-28047-4_13.
Piety, Philip J./Hickey, Daniel T./Bishop, M. J. (2014): Educational Data Sciences – Framing Emergent Practices for Analytics of Learning, Organizations, and Systems. In: Proceedings of the Fourth International Conference on Learning Analytics And Knowledge. New York: Association for Computing Machinery, S. 193-202. https://doi.org/10.1145/2567574.2567582.
Poitras, Eric/Dempsey, David/Crane, Brent Glan Charles/Simpson, Shelly/Siegel, Angela A. (2023): The Applications of Learning Analytics to Enhance Learning and Engagement in Introductory Programming Instruction. In: Durak, Gürhan/Cankaya, Serkan (Hrsg.): Perspectives on Learning Analytics for Maximizing Student Outcomes. Hershey, PA: IGI Global, S. 89-108. https://doi.org/10.4018/978-1-6684-9527-8.ch005.
Quinlan, J. R. (1986): Induction of Decision Trees. In: Machine Learning 1, 1, S. 81-106. https://doi.org/10.1023/A:1022643204877.
Romero, Christobal/Ventura, Sebastian/Pechenizkiy, Mykola/Baker, Ryan S. (Hrsg.) (2011): Handbook of Educational Data Mining. Boca Raton, FL: CRC Press.
Runkler, Thomas A. (2025): Data analytics. Models and Algorithms for Intelligent Data Analysis – A Comprehensive Introduction. Wiesbaden: Springer. https://doi.org/10.1007/978-3-658-45951-2.
Saggi, Mandeep Kaur/Jain, Sushma (2018): A Survey Towards an Integration of Big Data Analytics to Big Insights for Value-Creation. In: Information Processing & Management 54, 5, S. 758-790. https://doi.org/10.1016/j.ipm.2018.01.010.
Sahin, Muhittin/Ifenthaler, Dirk (Hrsg.) (2024): Assessment Analytics in Education. Designs, Methods and Solutions. Cham: Springer. https://doi.org/10.1007/978-3-031-56365-2.
Sampson, Demetrios/Papamitsiou, Zacharoula/Ifenthaler, Dirk/Giannakos, Michail/Mougiakou, Sofia/Vinatsella, Dimitra (2022): Educational Data Literacy. Cham: Springer. https://doi.org/10.1007/978-3-031-11705-3.
Samuel, A. L. (1959): Some Studies in Machine Learning Using the Game of Checkers. In: IBM Journal of Research and Development 3, 3, S. 210-229. https://doi.org/10.1147/rd.33.0210.
Sarker, Iqbal H. (2021): Machine Learning: Algorithms, Real-World Applications and Research Directions. In: SN Computer Science 2, 160. https://doi.org/10.1007/s42979-021-00592-x.
Schmidt-Hertha, Bernhard/Tippelt, Rudolf (2024): Zur Situation erziehungswissenschaftlicher Forschung an Hochschulen und außeruniversitären Forschungseinrichtungen. In: Zeitschrift für Erziehungswissenschaft 27, S. 1237-1257. https://doi.org/10.1007/s11618-024-01265-0.
Sergis, Stylianos/Sampson, Demetrios G. (2016): School Analytics: A Framework for Supporting School Complexity Leadership. In: Spector, J. Michael/Ifenthaler, Dirk/Sampson, Demetrios G./Isaias, Pedro (Hrsg.): Competencies in Teaching, Learning and Educational Leadership in the Digital Age. Cham: Springer, S. 79-122. https://doi.org/10.1007/978-3-319-30295-9_6.
Sergis, Stylianos/Sampson, Demetrios G. (2017): Teaching and Learning Analytics to Support Teacher Inquiry: A Systematic Literature Review. In: Peña-Ayala, Aeljandro (Hrsg.): Learning Analytics: Fundaments, Applications, and Trends. Cham: Springer, S. 25-63. https://doi.org/10.1007/978-3-319-52977-6_2.
Steinwart, Ingo/Christmann, Andreas (2008): Support Vector Machines. New York: Springer. https://doi.org/10.1007/978-0-387-77242-4.
Tenorth, Heinz-Elmar (2024): Erziehungswissenschaft seit 1990: Reduktion, Segmentierung, Identitätsprobleme – Vom Bedeutungsverlust einer Disziplin. In: Zeitschrift für Erziehungswissenschaft 27, S. 1191-1215. https://doi.org/10.1007/s11618-024-01268-x.
Tippelt, Rudolf/Schmidt-Hertha, Bernhard (Hrsg.) (2020): Handbuch Bildungsforschung. Wiesbaden: Springer VS. https://doi.org/10.1007/978-3-531-20002-6.
Tzimas, Dimitrios/Demetriadis, Stavros (2021): Ethical Issues in Learning Analytics: A Review of the Field. In: Educational Technology Research and Development 69, 3, S. 1101-1133. https://doi.org/10.1007/s11423-021-09977-4.
Westphal, Andrea/Zawacki-Richter, Olaf (2017): Von der Allgemeinen Erziehungswissenschaft zur Empirischen Bildungsforschung? In: Zeitschrift für Erziehungswissenschaft 24, S. 641-669. https://doi.org/10.1007/s11618-021-01008-5.